Abstract
Many researchers have introduced tag information to recommender systems to improve the performance of traditional recommendation techniques. However, user-defined tags will usually suffer from many problems, such as sparsity, redundancy, and ambiguity. To address these problems, we propose a new recommendation algorithm based on deep neural networks. In the proposed algorithm, users׳ profiles are initially represented by tags and then a deep neural network model is used to extract the in-depth features from tag space layer by layer. In this way, representations of the raw data will become more abstract and advanced, and therefore the unique structure of tag space will be revealed automatically. Based on those extracted abstract features, users׳ profiles are updated and used for making recommendations. The experimental results demonstrate the usefulness of the proposed algorithm and show its superior performance over the clustering based recommendation algorithms. In addition, the impact of network depth on the algorithm performance is also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.