Abstract

Establishment of a healthy ovarian reserve is contingent upon numerous regulatory pathways during embryogenesis. Previously, mice lacking TBP-associated factor 4b (Taf4b) were shown to exhibit a diminished ovarian reserve. However, potential oocyte-intrinsic functions of TAF4b have not been examined. Here, we use a combination of gene expression profiling and chromatin mapping to characterize TAF4b-dependent gene regulatory networks in mouse oocytes. We find that Taf4b-deficient oocytes display inappropriate expression of meiotic, chromatin modification/organization, and X-linked genes. Furthermore, dysregulated genes in Taf4b-deficient oocytes exhibit an unexpected amount of overlap with dysregulated genes in oocytes from XO female mice, a mouse model of Turner Syndrome. Using Cleavage Under Targets and Release Using Nuclease (CUT&RUN), we observed TAF4b enrichment at genes involved in chromatin remodeling and DNA repair, some of which are differentially expressed in Taf4b-deficient oocytes. Interestingly, TAF4b target genes were enriched for Sp/Klf family and NFY target motifs rather than TATA-box motifs, suggesting an alternative mode of promoter interaction. Together, our data connect several gene regulatory nodes that contribute to the precise development of the mammalian ovarian reserve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call