Abstract

Background: Non-small cell lung cancer is the most common type of lung cancer and is a frequent cause of death. In our research, A549 and SK-MES-1 were used to assess the effect of three-dimensional (3D) culture compared to that of two-dimensional (2D) monolayers in cell proliferation, migration, and invasion, response to chemotherapy, as well as the expression of epithelial to mesenchymal transition (EMT) and cancer stem cell (CSC)-related markers. As tadalafil is a phosphodiesterase type 5 (PDE5) inhibitor with the potential to target CSC maintenance in multiple cancer cell lines, we assessed its function in 3D culture and detected the downstream pathway genes. Methods: We compared the viability and proliferation capacity of A549 and SK-MES-1 cells in 2D and 3D culture by cell counting kit (CCK)-8, foci formation, and Live/Dead double stain (Operetta CLS High content screening). Migration, invasion, and other functions were also assessed. To elucidate the underlying mechanisms, the expression of EMT and CSC markers was analyzed by quantitative real-time PCR (qPCR) and Western blot. Results: A549 and SK-MES-1 cells formed spheroids heterogeneous in shape and size. In our 3D spheroid systems, cells went through EMT, and were also capacitated with higher stemness and chemoresistance. Combination use of tadalafil and cisplatin showed higher chemotherapy efficiency in the 3D model, compared to that of the 2D cell culture. Conclusion: Our research aims at the notable differences between these two cellular systems in terms of cell functions, EMT, and stemness-associated gene expression and chemo-response. We showed that a commonly used drug, tadalafil, showed more pronounced inhibitory effects when cells were cultured in the 3D model. Since the 3D culture system could imitate the in vivo behavior of cancer cells within the tumor, we advocate that this system is superior to traditional 2D culture and should be used in the investigation of new therapeutic compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call