Abstract

When an on-board system detects a drift of a vehicle to the left or to the right, in what way should the information be delivered to the driver? Car manufacturers have so far neglected relevant results from Experimental Psychology and Cognitive Neuroscience. Here we show that this situation possibly led to the sub-optimal design of a lane departure warning system (AFIL, PSA Peugeot Citroën) implemented in commercially available automobile vehicles. Twenty participants performed a two-choice reaction time task in which they were to respond by clockwise or counter-clockwise wheel-rotations to tactile stimulations of their left or right wrist. They performed poorer when responding counter-clockwise to the right vibration and clockwise to the left vibration (incompatible mapping) than when responding according to the reverse (compatible) mapping. This suggests that AFIL implements the worse (incompatible) mapping for the operators. This effect depended on initial practice with the interface. The present research illustrates how basic approaches in Cognitive Science may benefit to Human Factors Engineering and ultimately improve man-machine interfaces and show how initial learning can affect interference effects.

Highlights

  • Thirty seven percent of all transportation fatalities in the USA are caused by running off from the road (National Highway Traffic Safety Administration: http://www.nhtsa.gov/NCSA)

  • The participants of group 1 “Compatible first” responded by a counter-clockwise rotation to the left vibration and by a clockwise rotation to the right vibration during the first and third sessions while this mapping was performed by the participants of group 2 “Incompatible first” during the second and fourth sessions

  • The participants of group 2 “Incompatible first” responded by a clockwise rotation to the left vibration during the first and third sessions while this mapping was performed by the participants of group 1 “Compatible first” during the second and fourth sessions

Read more

Summary

Introduction

Thirty seven percent of all transportation fatalities in the USA are caused by running off from the road (National Highway Traffic Safety Administration: http://www.nhtsa.gov/NCSA). To cope with this problem, different major car companies (i.e.; Toyota, Honda, Audi, General Motors, Kia Motors, Nissan, MercedesBenz, BMW, Opel, PSA Peugeot Citroën) have developed “lane departure warning systems,” that are mechanisms designed to warn the driver when the vehicle is leaving its lane on freeways and arterial roads. During the past two decades, basic research in Experimental Psychology and Cognitive Neuroscience has tremendously improved our knowledge of the brain mechanisms involved in action control. The present paper illustrates the first step of a research process that may augment lane departure warning system in automobile vehicles

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.