Abstract

The demand for tactile devices with human-like exquisiteness has recently been increasing in various fields. Among the various parameters that humans feel through the tactile system, temperature and surface topography are the most important parameters to achieve artificial tactile devices with human level precision. Here, we present a new tactile sensor with high resolution surface topography recording and temperature measurement. Our tactile sensor was designed to have a surface topography sensing part driven by P(VDF-TrFE) and a thermistor part for temperature sensing. Even though the sensor touched the same temperature object, the sliding condition showed different resistance change values. Therefore, the correlation factors of the sliding velocity to temperature were defined with a simple relation function. To achieve high resolution recording, ‘zig-zag’ arrayed tactile sensor can overcome the limitations of simple matrix cell design. The design eliminates empty spaces between sensor cells. By using these systems, a resolution of ~500μm to x-direction was achieved. This tactile sensor has linear sensitivity to pressure with a superior response time of 10ms for dynamic sensing. By integrating the dynamic piezoelectric signals during the sliding motion, we can reconstruct the surface topography of various objects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call