Abstract

To enhance virtual reality (VR) generated by tactile displays, we have focused on a novel tactile illusion, called the Velvet Hand Illusion (VHI). In VHI, moving two parallel wires back and forth between the two hands leads humans to perceive a velvet-like surface between their hands. In earlier studies, we revealed that the intensity of VHI could be controlled by a ratio ( r/ D), where r and D are the wire stroke and wire distance, respectively. According to these findings, we investigate in this study whether a common tactile display is able to produce VHI, and whether the ratio can also control VHI intensity. We prepare a dot-matrix display as a tactile display in which moving one line of the display’s pins is considered as a wire pattern. We investigate the VHI intensity with regard to changing the stroke r and the line distance D using paired comparison. Experimental results show that the VHI intensity is increased or decreased by changing r and D. We conclude that VHI can be created by the tactile display, and the intensity of VHI is controlled by changing the ratio of r/ D.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.