Abstract

Members of the blind and visually impaired community rely heavily on tactile illustrations - raised line graphics on paper that are felt by hand - to understand geometric ideas in school textbooks, depict a story in children's books, or conceptualize exhibits in museums. However, these illustrations often fail to achieve their goals, in large part due to the lack of understanding in how 3D shapes can be represented in 2D projections. This paper describes a new technique to design tactile illustrations considering the needs of blind individuals. Successful illustration design of 3D objects presupposes identification and combination of important information in topology and geometry. We propose a twofold approach to improve shape understanding. First, we introduce a part-based multi-projection rendering strategy to display geometric information of 3D shapes, making use of canonical viewpoints and removing reliance on traditional perspective projections. Second, curvature information is extracted from cross sections and embedded as textures in our illustrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.