Abstract

This paper defines a new approach and investigates a fundamental problem in route planners. This capability is important for robotic vehicles(Martian Rovers, etc.) and for planning off-road military maneuvers. The emphasis throughout this paper will be on the design and analysis and hieiaichical implementation of our route planner. This work was motivated by anticipation of the need to search a grid of a trillion points for optimum routes. This cannot be done simply by scaling upward from the algorithms used to search a grid of 10,000 points. Algorithms sufficient for the small grid are totally inadequate for the large grid. Soon, the challenge will be to compute off-road routes more than 100 km long and with a one or two-meter grid. Previous efforts are reviewed and the data structures, decomposition methods and search algorithms are analyzed and limitations are discussed. A detailed discussion of a hieraichical implementation is provided and the experimental results are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.