Abstract

ABSTRACT For significant oil spills in remote areas with complex shoreline geometry, apportioning Shoreline Cleanup Assessment Technique (SCAT) survey effort is a complicated and difficult task. Aerial surveys are often used to select shoreline areas for ground survey after an initial prioritization based upon anecdotal reports or trajectory models, but aerial observers may have difficulty locating cryptic surface shoreline oiling in vegetated or other complex environments. In dynamic beach environments, stranded shoreline oiling may be rapidly buried, making aerial observation difficult. A machine learning-based model is presented for estimating shoreline oiling probabilities via satellite-derived surface oil analysis products, wind summary data, and shoreline habitat type and geometry data. These inputs are increasingly available at spatial and temporal scales sufficient for tactical use, enabling model predictions to be generated within hours after satellite remote sensing products are available. The model was constructed using SCAT data from the Deepwater Horizon oil spill, satellite-derived surface oil analysis products generated during the spill by NOAA's National Environmental Satellite, Data, and Information Service (NESDIS) using a variety of satellite platforms of opportunity, and available shoreline geometry, character, and other preexisting data. The model involves the generation of set of spatial indices of relative over-water proximity of surface oil slicks based upon the satellite-derived analysis products. The model then uses boosted regression trees (BRT), a flexible and relatively recently developed modeling methodology, to generate calibrated estimates of probability of subsequent shoreline oiling based upon these indices, wind climatological data over the time period of interest, and other shoreline data. The model can be implemented via data preparation in any Geographic Information System (GIS) software coupled with the open-source statistical computing language, R. The model is entirely probabilistic and makes no attempt to reproduce the physics of oil moving through the environment, as do trajectory models. It is best used in concert with such models to make estimates at different spatial scales, or when time and data requirements make implementation of fine-scale trajectory modeling impractical for tactical use. The details of model development implementation and assessments of model performance and limitations are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call