Abstract

Little is known about the endothelial injury caused directly by circulating donor-specific antibodies (DSAs) during antibody-mediated rejection. von Willebrand factor (vWF) is a highly thrombotic glycoprotein stored in Weibel-Palade bodies in endothelial cells. It has been shown that its secretion is triggered by allostimulation. Calcineurin-like phosphatases regulate pathways involved in vWF secretion. Therefore, we hypothesized that tacrolimus would prevent alloantibody-induced glomerular lesions, in part via inhibition of vWF secretion from endothelial cells. Here, we used a human in vitro model of glomerular endothelium expressing HLA class I and II antigens and demonstrated that anti-HLA class II antibodies elicit a higher endothelial release of vWF than do anti-HLA class I antibodies in cell supernatants. We observed that tacrolimus treatment decreased vWF secretion after stimulation with both classes of anti-HLA antibodies and decreased platelet adhesion on allostimulated endothelial cells in a microfluidic chamber. In kidney recipients, tacrolimus trough levels were negatively associated with vWF blood levels. These results indicate that direct disruption of hemostasis via vWF secretion is a potential mechanism of antibody-mediated injury in patients with DSAs. Our results further suggest that the targeting of microcirculation hemostasis may be beneficial to prevent the development of microangiopathic lesions in antibody-mediated rejection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call