Abstract
Novel psychoactive substances (NPS) represent a broad class of drugs new to the illicit market that often allow passing drug-screening tests. They are characterized by a variety of structures, rapid transience on the drug scene and mostly unknown metabolic profiles, thus creating an ever-changing scenario with evolving analytical targets. The present study aims at developing an indirect screening strategy for NPS monitoring, and specifically for new synthetic opioids (NSOs), based on assessing changes in endogenous urinary metabolite levels as a consequence of the systemic response following their intake. The experimental design involved in-vivo mice models: 16 animals of both sex received a single administration of morphine or fentanyl. Urine was collected before and after administration at different time points; the samples were then analysed with an untargeted metabolomics LC-HRMS workflow. According to our results, the intake of opioids resulted in an elevated energy demand, that was more pronounced on male animals, as evidenced by the increase in medium and long chain acylcarnitines levels. It was also shown that opioid administration disrupted the pathways related to catecholamines biosynthesis. The observed alterations were common to both morphine and fentanyl: this evidence indicate that they are not related to the chemical structure of the drug, but rather on the drug class. The proposed strategy may reinforce existing NPS screening approaches, by identifying indirect markers of drug assumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.