Abstract

In this work, we investigate a multi-period Home Health Care Scheduling Problem (HHCSP) under stochastic service and travel times. We first model the deterministic problem as an integer linear programming model that incorporates real-world requirements, such as time windows, continuity of care, workload fairness, inter-visit temporal dependencies. We then extend the model to cope with uncertainty in durations, by introducing chance constraints into the formulation. We propose efficient solution approaches, which provide quantifiable near-optimal solutions and further handle the uncertainties by employing a sampling-based strategy. We demonstrate the effectiveness of our proposed approaches on instances synthetically generated by real-world dataset for both deterministic and stochastic scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.