Abstract

The increasing global demand for fatty products, population growth, and the expansion of food service establishments (FSEs) present significant challenges for the wastewater industry. This is often due to the build-up of fat, oil and grease (FOG) in sewers, which reduces capacity and leads to sanitary sewer overflows. It is crucial to develop economic and sustainable in-sewer FOG management techniques to minimise maintenance costs and service disruptions caused by the removal of FOG deposits from sewers. This study aims to understand the process of FOG deposit formation in both concrete and non-concrete sewers. Compared to fresh cooking oil, disposal of used cooking oil in households and FSE sinks results in the formation of highly adhesive and viscous FOG deposits. This occurs due to hydrolysis during frying, which increases the concentration of fatty acids, particularly palmitic acid, in the used cooking oil. Furthermore, metal ions from food waste, wastewater, and dishwashing detergents contribute to the saponification and aggregation reactions which cause FOG deposition in both concrete and non-concrete sewers. However, the leaching of Ca2+ ions exacerbates FOG deposition in cement-concrete sewers. The article concludes by suggesting future research perspectives and proposes implementation strategies for microbially induced concrete corrosion (MICC) control to manage FOG deposition in sewers. One such strategy involves applying superhydrophobic coating materials with low surface free energy and high surface roughness to the interior surfaces of the sewer. This approach would help repel wastewater carrying FOG deposit components, potentially disrupting the interaction between FOG components, and reducing the adhesion of FOG deposits to sewer surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.