Abstract

Biochemical and cell-based assays are essential to discovering and optimizing efficacious and safe drugs, agrochemicals and cosmetics. However, false assay readouts stemming from colloidal aggregation, chemical reactivity, chelation, light signal attenuation and emission, membrane disruption, and other interference mechanisms remain a considerable challenge in screening synthetic compounds and natural products. To address assay interference, a range of powerful experimental approaches are available and in silico methods are now gaining traction. This Review begins with an overview of the scope and limitations of experimental approaches for tackling assay interference. It then focuses on theoretical methods, discusses strategies for their integration with experimental approaches, and provides recommendations for best practices. The Review closes with a summary of the critical facts and an outlook on potential future developments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call