Abstract

The increasingly common use of neural network classifiers in industrial and social applications of image analysis has allowed impressive progress these last years. Such methods are, however, sensitive to algorithmic bias, i.e., to an under- or an over-representation of positive predictions or to higher prediction errors in specific subgroups of images. We then introduce in this paper a new method to temper the algorithmic bias in Neural-Network-based classifiers. Our method is Neural-Network architecture agnostic and scales well to massive training sets of images. It indeed only overloads the loss function with a Wasserstein-2-based regularization term for which we back-propagate the impact of specific output predictions using a new model, based on the Gâteaux derivatives of the predictions distribution. This model is algorithmically reasonable and makes it possible to use our regularized loss with standard stochastic gradient-descent strategies. Its good behavior is assessed on the reference Adult census, MNIST, CelebA datasets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call