Abstract

Tachyphylaxis, defined as the acute loss of response of some smooth muscles upon repeated stimulations with angiotensin II (Ang II), has been shown to be dependent mainly on the N-terminal region of the ligand. To further study the structural requirements for the induction of tachyphylaxis we have synthesized Ang II analogs containing the bulky and very lipophilic substituents 9-fluorenylmethyloxycarbonyl (Fmoc) and 9-fluorenylmethyl ester (OFm) at the alpha-amino (Nalpha-Fmoc-Ang II) or the beta-carboxyl ([Asp(OFm)1]-Ang II) groups of the Asp1 residue, respectively. In binding assays with Chinese hamster ovary cells transfected with the AT1 Ang II receptor, Nalpha-Fmoc-Ang II bound with high affinity, whereas [Asp(OFm)1]-Ang II showed lower affinity. In biological assays, these two analogs were full agonists and showed 30 and 3%, respectively, of the Ang II potency in contracting the guinea-pig ileum smooth muscle. The two analogs induced tachyphylaxis, in spite of the lack of a free amino group in Nalpha-Fmoc-Ang II. Thus, analogs with Fmoc- or OFm-type groups coupled to the Asp1 residue, whether at the amino or carboxyl functions, induce tachyphylaxis through an unreported mechanism. Based in these findings and those available from the literature, an alternate molecular interaction mode between Ang II N-terminal portion and the AT1 receptor is proposed to explain the tachyphylactic phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.