Abstract
The activation of NK1 receptors on U373 MG human astrocytoma cells by substance P (SP) and related tachykinins was accompanied by an increase in taurine release and an accumulation of inositol phosphates. Both of these effects could be inhibited by spantide, a SP receptor antagonist. The relative potency of tachykinins in stimulating 3H-inositol phosphate accumulation correlated very well with their effects in stimulating the release of [3H]-taurine and inhibition 125I-Bolton-Hunter reagent-conjugated SP binding. The effect on [3H]taurine release was mimicked by a protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA). The inactive phorbol ester analogue 4-alpha-phorbol 12,13-didecanoate, however, was without effect. Both SP- and PMA-induced releases of [3H]-taurine were markedly inhibited by staurosporine, a potent PKC inhibitor. Pretreatment of U373 MG cells with 10 microM PMA for 19 h to down-regulate PKC activity also markedly inhibited both SP- and PMA-induced releases of [3H]-taurine. Treatment of cells with 100 nM SP induced a time-dependent translocation of PKC from the cytosolic fraction to the membrane fraction. These findings are consistent with the hypothesis that an activation of NK1 receptors on U373 MG cells results in the release of inositol phosphates and activation of PKC, which in turn may regulate the release of taurine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.