Abstract

Electrical field stimulation of circular muscle strips from the guinea-pig isolated renal pelvis produces a frequency-dependent positive inotropic effect of the spontaneous contractions which is unaffected by atropine and guanethidine and abolished by tetrodotoxin or in vitro capsaicin densensitization. Omega conotoxin fraction GVIA markedly inhibited the response to low frequencies of stimulation but had only a partial or minor inhibitory effect at higher frequencies. Tachykinins produce a concentration-dependent positive inotropic effect, neurokinin A being more potent than substance P. On the other hand, rat alpha calcitonin gene-related peptide (CGRP) inhibited spontaneous contractions of the renal pelvis. MEN 10,376 a neurokinin A (4–10) analog, antagonized the positive inotropism produced by neurokinin A, without affecting the response to KCl, and suppressed the positive inotropic response produced by electrical field stimulation. In the presence of MEN 10,376, a negative inotropic response was produced by electrical field stimulation which was antagonized by the C-terminal fragment (8–37) of human alpha calcitonin gene-related peptide (hCGRP). hCGRP (8– 37) antagonized the negative inotropic effect of exogenously administered CGRP without affecting inhibition by isoprenaline. Application of capsaicin (10 μM) produced a marked increase in the outflow of substance P-, neurokinin A- and CGRP-like immunoreactivities from the superfused guinea-pig renal pelvis. Substance P-, neurokinin Aand CGRP-like immunoreactivities were also detected in tissue extracts of the renal pelvis by radioimmunoassay. These experiments indicate that peptide release from peripheral endings of capsaicin-sensitive primary afferents represents the major type of nerve-mediated response affecting motility of the guinea-pig isolated renal pelvis. Tachykinins and CGRP act as physiological antagonists and the excitatory action of tachykinins prevails over the inhibitory action of CGRP. Local modulation of renal pelvis motility by sensory nerves could facilitate removal of irritants present in the urine, protecting the kidney during obstruction and ureteral antiperistalsis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.