Abstract

We investigated the molecular mechanism of rapid-depolarization-induced atrial fibrosis. We used a direct atrial myocyte-fibroblast contact co-culture and a fibroblast-specific transforming growth factor β1 (TGF-β1), connective tissue growth factor (CTGF) and procollagen type I α-1 (COL1A1) luciferase reporter system to investigate the possible molecular mechanism of rapid-depolarization-induced atrial fibrosis. Mouse atrial fibroblasts were first transfected with promoter-luciferase reporters, and then co-cultured with HL-1 atrial myocytes. Rapid depolarization of atrial myocytes by rapid electrical field stimulation induced increased TGF-β1, CTGF and COL1A1 promoter activities in the co-cultured atrial fibroblasts (2.4 ± 0.3-fold increase, P= 0.008 for TGF-β1; 2.9 ± 0.4-fold increase, P< 0.001 for CTGF; and 2.1 ± 0.2-fold increase, P= 0.008 for COL1A1). Rapid depolarization of atrial myocytes increased paracrine secretion of angiotensin II (Ang II) and reactive oxygen species in the co-culture medium. Rapid electrical field stimulation-induced ROS generation in atrial myocytes was attenuated by the membrane NADPH oxidase inhibitor, apocynin. Atrial myocyte-induced expression of TGF-β1, CTGF and COL1A1 in atrial fibroblasts was attenuated by co-treatment with the Ang II receptor blocker, losartan, and apocynin. Atrial myocyte-induced COL1A1 expression in atrial fibroblasts was attenuated by anti-TGF-β1 antibody and RNA interference knockdown of the TGF-β1 receptor. We first demonstrated that tachycardia of atrial myocytes induced paracrine secretion of Ang II and reactive oxygen species, which in turn induced expression of CTGF and procollagen in co-cultured atrial fibroblasts through increasing TGF-β1 expression. The results may imply that use of an AngII receptor blocker, in combination with an anti-oxidant, blocks rapid-depolarization-induced atrial fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.