Abstract

Transcriptionally active chromosome (TAC) is a fraction of protein/DNA complexes with RNA polymerase activity in the plastid. However, the function of most TAC proteins remains unknown. Here, we isolated two allelic mutants of the gene for a TAC component, TAC7, and performed functional analysis in plastid gene expression and chloroplast development in Arabidopsis. tac7-1 is a mutant with a premature translation termination isolated from a population treated with ethyl methane sulfonate, and tac7-2 is a transfer-DNA tagging mutant. Both of them showed an albino phenotype when grown under normal light conditions, and a few appressed membranes were observed inside the defective chloroplasts. These data indicate that TAC7 is important for thylakoid biogenesis. The TAC7 gene encodes an uncharacterized 161 amino acids polypeptide localized in chloroplast. The transcriptional levels of plastid-encoded polymerase (PEP)-dependent genes were downregulated in tac7-2, suggesting that PEP activity was decreased in the mutant. Yeast two-hybrid assay shows that TAC7 can interact with the four TAC components including FLN1, TAC10, TAC12 and TAC14 which are involved in redox state changes, phosphorylation processes and phytochrome-dependent light signaling, respectively, These data indicate that TAC7 plays an important role for TAC to regulate PEP-dependent chloroplast gene expression and chloroplast development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.