Abstract

Tachykinin-1 (TAC1) is known to have diverse functions in mammals, but similar information is scarce in fish species. Using grass carp as a model, the pituitary actions, receptor specificity and postreceptor signaling of TAC1 gene products, namely substance P (SP) and neurokinin A (NKA), were examined. TAC1 encoding SP and NKA as well as tachykinin receptors NK1R and NK2R were cloned in the carp pituitary. The newly cloned receptors were shown to be functional with properties similar to mammalian counterparts. In carp pituitary cells, SP and NKA could trigger luteinizing hormone (LH), prolactin (PRL), and somatolactin α (SLα) secretion, with parallel rises in PRL and SLα transcripts. Short-term SP treatment (3 hours) induced LH release, whereas prolonged induction (24 hours) could attenuate LHβ messenger RNA (mRNA) expression. At pituitary cell level, LH, PRL, and SLα regulation by TAC1 gene products were mediated by NK1R, NK2R, and NK3R, respectively. Apparently, SP- and NKA-induced LH and SLα secretion and transcript expression were mediated by adenylyl cyclase/cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), phospholiphase C (PLC)/inositol 1,4,5-triphosphate/protein kinase C (PKC), and Ca2+/calmodulin (CaM)/CaM-dependent protein kinase-II pathways. The signal transduction for PRL responses was similar, except for the absence of a PKC component. Regarding SP inhibition of LHβ mRNA expression, the cAMP/PKA- and PLC/PKC-dependent (but not Ca2+/CaM-dependent) cascades were involved. These results, as a whole, suggest that TAC1 gene products play a role in LH, PRL, and SLα regulation via overlapping postreceptor signaling coupled to different subtypes of tachykinin receptor expressed in the carp pituitary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call