Abstract

Liver diseases are among the most common diseases worldwide. Because of the high incidence and high mortality rate, these diseases diagnoses are vital. Several elements harm the liver. For instance, obesity, undiagnosed hepatitis infection, and alcohol abuse. This causes abnormal nerve function, bloody coughing or vomiting, insufficient kidney function, hepatic failure, jaundice, and liver encephalopathy.. The diagnosis of this disease is very expensive and complex. Therefore, this work aims to assess the performance of various machine learning algorithms at decreasing the cost of predictive diagnoses of chronic liver disease. In this study, five machine learning algorithms were employed: Logistic Regression, K-Nearest Neighbor, Decision Tree, Support Vector Machine, and Artificial Neural Network (ANN) algorithm. In this work, we examined the effects of the increased prediction accuracy of Generative Adversarial Networks (GANs) and the synthetic minority oversampling technique (SMOTE). Generative opponents’ networks (GANs) are a mechanism to produce artificial data with a distribution close to real data distribution. This is achieved by training two different networks: the generator, which seeks to produce new and real samples, and the discriminator, which classifies the augmented samples using supervised classifications. Statistics show that the use of increased data slightly improves the performance of the classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.