Abstract

In reality, a contractor may implement multiple projects simultaneously and in such an environment, how to achieve a positive balance between cash outflow and inflow by scheduling is an important problem for the contractor has to tackle. For this fact, this paper investigates a resource-constrained multi-project scheduling problem with the objective of minimizing the contractor's maximal cash flow gap under the constraint of a project deadline and renewable resource. In the paper, we construct a non-linear integer programming optimization model for the studied problem at first. Then, for the NP-hardness of the problem, we design three metaheuristic algorithms to solve the model: tabu search (TS), simulated annealing (SA), and an algorithm comprising both TS and SA (SA-TS). Finally, we conduct a computational experiment on a data set coming from existing literature to evaluate the performance of the developed algorithms and analyze the effects of key parameters on the objective function. Based on the computational results, the following conclusions are drawn: Among the designed algorithms, the SA-TS with an improvement measure is the most promising for solving the problem under study. Some parameters may exert an important effect on the contractor's maximal cash flow gap.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call