Abstract
A new artificial neural network solution approach is proposed to solve combinatorial optimization problems. The artificial neural network is called the Tabu Machine because it has the same structure as the Boltzmann Machine does but uses tabu search to govern its state transition mechanism. Similar to the Boltzmann Machine, the Tabu Machine consists of a set of binary state nodes connected with bidirectional arcs. Ruled by the transition mechanism, the nodes adjust their states in order to search for a global minimum energy state. Two combinatorial optimization problems, the maximum cut problem and the independent set problem, are used as examples to conduct a computational experiment. Without using overly sophisticated tabu search techniques, the Tabu Machine outperforms the Boltzmann Machine in terms of both solution quality and computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.