Abstract
An important class of scheduling problems is characterised by time-dependency and/or sequence-dependency with time windows. We introduce and analyze four algorithmic ideas for this class: a novel hybridization of adaptive large neighbourhood search (ALNS) and tabu search (TS), randomized generic neighbourhood operators, a partial sequence dominance heuristic, and a fast insertion strategy. An evaluation of the resulting hybrid algorithm on two domains, a realworld multi-orbit agile Earth observation satellite scheduling problem, and an order acceptance and scheduling problem, shows that it robustly outperforms a mixed integer programming method, a two-stage hybridization of ALNS and TS, and recent state-of-the-art metaheuristic methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Conference on Automated Planning and Scheduling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.