Abstract

The increasing interest in chiral light stems from its spiral trajectory along the propagation direction, facilitating the interaction between different polarization states of light and matter. Despite tremendous achievements in chiral light-related research, the generation and control of chiral pulses have presented enduring challenges, especially at the terahertz and ultraviolet spectral ranges, due to the lack of suitable optical elements for effective pulse manipulation. Conventionally, chiral light can be obtained from intricate optical systems, by an external magnetic field, or by metamaterials, which necessitate sophisticated optical configurations. Here, leveraging the high harmonic generation process, we propose a versatile tunable chiral emitter, composed of only two planar Weyl semimetals slabs, addressing the challenges in both spectral ranges. Our results open the way to a compact tunable chiral emitter platform in both terahertz and ultra-violet frequency ranges. This advancement holds the potential to serve as the cornerstone for integrated chiral photonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.