Abstract
The aim of the study was to evaluate the suitability of alginates for Soft Tableting. For this purpose the compaction properties of alginates, varying in molecular weight, guluronic acid/mannuronic acid ratio and salt, were investigated and compared to MCC. Based on the mechanical properties, the suitability of the tested excipients for Soft Tableting was predicted. In order to test the prediction the tested materials were used to tablet enteric coated pellets, which served as a pressure sensitive material. The tableting behaviour was analysed by the 3-D modeling technique. The tablet properties were analysed by determining the elastic recovery and the compactibility. Alginates in general deformed elastically. The compression behaviour depended on the chemical composition of the alginates with sodium alginates being more elastic than potassium alginates. Tablets containing alginates with low guluronic acid content exhibited higher elasticity than tablets with alginates having a low mannuronic acid content. The plasticity of potassium alginates was higher than for sodium alginates. However, the plasticity of all tested alginates was lower than the plasticity of MCC. The compactibility of the tested alginates was sufficient. The proposed prediction, which states that tableting excipients with higher elasticity are more suitable for tableting sensitive materials than plastic excipients, was valid for the tested materials. The elastic alginates inflicted less damage on the pellets than the plastic MCC. Thus, all alginates were more appropriate for tableting pressure sensitive materials than MCC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.