Abstract

Tablet computers’ hardware and software designs may affect upper extremity muscle activity and postures. This study investigated the hypothesis that forearm muscle activity as well as wrist and thumb postures differ during simple gestures across different tablet form factors and touchscreen locations. Sixteen adult (8 female, 8 male) participants completed 320 tablet gestures across four swipe locations, with various tablet sizes (8″ and 10”), tablet orientations (portrait and landscape), swipe orientations (vertical and horizontal), and swipe directions (medial and radial). Three-dimensional motion analysis and surface electromyography measured wrist and thumb postures and forearm muscle activity, respectively. Postures and muscle activity varied significantly across the four swipe locations (p < .0001). Overall, swipe location closest to the palm allowed users to swipe with a more neutral thumb and wrist posture and required less forearm muscle activity. Greater thumb extension and abduction along with greater wrist extension and ulnar deviation was required to reach the target as the target moved farther from the palm. Extensor Carpi Radialis, Extensor Carpi Ulnaris, Flexor Carpi Ulnaris, Extensor Policis Brevis, and Abductor Pollicis Longus muscle activity also increased significantly with greater thumb reach (p < 001). Larger tablet size induced greater Extensor Carpi Radialis, Extensor Carpi Ulnaris, Flexor Carpi Ulnaris, Flexor Carpi Radialis, and Abductor Pollicis Longus muscle activity (p < .0001). The study results demonstrate the importance of swipe locations and suggest that the tablet interface design can be improved to induce more neutral thumb and wrist posture along with lower forearm muscle load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call