Abstract
Hybrid logics were proposed in [15] as a way of boosting the expressivity of modal logics via a novel mechanism: adding labels for states in Kripke models and viewing these labels as formulae. In addition, hybrid logics may contain quantifiers to bind the labels. Thus, hybrid logics have both Kripke semantics and a first-order binding apparatus. We present prefixed tableau calculi for weak hybrid logics (proper fragments of classical logic) as well as for hybrid logics having full first-order expressive power, and give a general method for proving completeness. For the weak quantifier-free logics we present a tableau-based decision procedure.KeywordsModal LogicAccessibility RelationKripke ModelHybrid LogicProof ProcedureThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.