Abstract
The key to a robust and efficient implementation of a computational geometry algorithm is an efficient algorithm for detecting degenerate predicates. We study degeneracy detection in constructing the free space of a polyhedron that rotates around a fixed axis and translates freely relative to another polyhedron. The structure of the free space is determined by the signs of univariate polynomials, called angle polynomials, whose coefficients are polynomials in the coordinates of the vertices of the polyhedra. Every predicate is expressible as the sign of an angle polynomial f evaluated at a zero t of an angle polynomial g. A predicate is degenerate (the sign is zero) when t is a zero of a common factor of f and g. We present an efficient degeneracy detection algorithm based on a one-time factoring of every possible angle polynomial. Our algorithm is 3500 times faster than the standard algorithm based on greatest common divisor computation. It reduces the share of degeneracy detection in our free space computations from 90% to 0.5% of the running time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.