Abstract

ABSTRACTThe character theory of table algebras is not as good as the character theory of finite groups. We introduce the notion of a table algebra with a central-fusion, in which the character theory has better properties. We study conditions under which a table algebra (A,B) has a central-fusion, and its central-fusion is exactly isomorphic to the wreath product of the central-fusion of a quotient table algebra of (A,B) and another table algebra. As a consequence, we obtain a complete characterization of table algebras with exactly one irreducible character whose degree and multiplicity are not equal. Applications to association schemes are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.