Abstract

Thirteen organic coatings with three base polymers (epoxy, polysiloxane, polyurethane) were tested in a load-controlled Taber abrasion tester at different normal force levels (2.5 to 25 N). Abrasive wear functions, as well as two partial abrasive wear resistance coefficients, were estimated. Results of scanning electron microscopy (SEM) investigations indicated that both plastic deformation mechanisms and fracture mechanisms caused material removal during the abrasive wear of the materials. The predominant and rate-controlling mechanism depended on normal force and polymer type. Abrasive wear in terms of coating layer thickness loss, as well as the probability of fracture/cracking-based material removal mechanisms, increased with increasing normal force. The ranking of abrasive wear resistance was as follows: epoxy > polysiloxane > polyurethane. The relationship between abrasive wear and normal force followed a power law with power exponents between 0.45 and 1.4. The power exponents were found to depend on the polymer types. The type of polymer was very important for low normal forces, whereas the importance of polymer variation vanished for the higher normal forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.