Abstract

Hepatic injury is one of the most challenging diseases in clinical medicine. Hepatic injury is accompanied by hepatocyte apoptosis and leads to hepatic fibrosis and cirrhosis, which may cause liver cancer and increased mortality. Therefore, it is essential to investigate the regulation mechanism and therapeutic strategies for hepatic injury. In the study, the effects of Thymosin β4 (Tβ4) on Long intergenic noncoding RNA-p21 (lincRNA-p21)-mediated liver injury were investigated. Results showed that lincRNA-p21 overexpression promoted hepatocytes apoptosis, which was blocked by Tβ4. Besides, Tβ4 reversed the levels of cleaved caspase-3 and caspase-9 induced by lincRNA-p21. LincRNA-p21 overexpression also caused the pathological injury and fibrosis in hepatic tissues and increased the levels of fibrosis-related proteins (Collagen I, α-SMA and TIMP-1), and induced hydroxyproline and ALT production. However, Tβ4 reversed the effects of overexpression of lincRNA-p21 on hepatic injury and fibrosis. In vitro experiments, after lincRNA-p21 was overexpressed in hepatic stellate cells (HSCs), the proliferation ability and the levels of HSCs markers α-SMA and Desmin were increased. However, Tβ4 reversed the effects of lincRNA-p21 on HSCs. Furthermore, the PI3K-AKT-NF-κB pathway was activated by lincRNA-p21, which was then reversed by the Tβ4 administration. After the mice treated by insulin-like growth factor-1 (IGF-1) (the activator of PI3K-AKT), the inhibitory effect of Tβ4 on activated the PI3K-AKT-NF-κB pathway was abrogated. Besides, IGF-1 abolished the protective effects of Tβ4 on hepatic apoptosis and fibrosis induced by lincRNA-p21. Therefore, Tβ4 reversed. lincRNA-p21-mediated liver injury through inhibiting PI3K-AKT-NF-κB pathway. Tβ4 may be a promising drug for fibrosis therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call