Abstract

Background Bipolar Disorder (BPD) is a common and severe mental disorder. The involvement of genetic factors in the pathophysiology of BPD is well known. In the present study we tested the association of several SNPs within three strong candidate genes, CACNA1C, CHRNA7 and MAPK1, with BPD. These genes are involved in monoamines-related pathways as well as in dendrites development, neuronal survival, synaptic plasticity and memory/learning. Methods One hundred and thirty-two (132) subjects diagnosed with BPD and 326 healthy controls of Korean ancestry were genotyped for 40 SNPs within CACNA1C, CHRNA17 and MAPK1. Distribution of alleles and block of haplotypes within each gene were compared in cases and controls. Interactions between variants in different loci were also tested. Results Significant differences in the distribution of alleles between the cases and controls where detected for rs1016388 within CACNA1C, rs1514250, rs2337980, rs6494223, rs3826029 and rs4779565 within CHRNA7 and rs8136867 within MAPK1. Haplotype analyses also confirmed an involvement of variations within these genes in BPD. Finally, exploratory epistatic analyses demonstrated potential interactive effects, especially regarding variations in CACNA1C and CHRNA7. Discussion Overall, our data suggest a possible role of these three genes in BPD. Alterations of one or more common brain pathways (e.g. neurodevelopment and neuroplasticity, calcium signaling) may explain the obtained results. However, a limited sample size and the consequential risk of false positive findings should be taken into consideration when evaluating this data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call