Abstract

BackgroundMyocardial edema in acute myocardial infarction (AMI) is commonly imaged using dark-blood short tau inversion recovery turbo spin echo (STIR-TSE) cardiovascular magnetic resonance (CMR). The technique is sensitive to cardiac motion and coil sensitivity variation, leading to myocardial signal nonuniformity and impeding reliable depiction of edematous tissues. T2-prepared balanced steady state free precession (T2p-bSSFP) imaging has been proposed, but its contrast is low, and averaging is commonly needed. T2 mapping is useful but requires a long scan time and breathholding. We propose here a single-shot magnetization prepared sequence that increases the contrast between edema and normal myocardium and apply it to myocardial edema imaging.MethodsA magnetization preparation module (T2STIR) is designed to exploit the simultaneous elevation of T1 and T2 in edema to improve the depiction of edematous myocardium. The module tips magnetization down to the –z axis after T2 preparation. Transverse magnetization is sampled at the fat null point using bSSFP readout and allows for single-shot myocardial edema imaging. The sequence (T2STIR-bSSFP) was studied for its contrast behavior using simulation and phantoms. It was then evaluated on 7 healthy subjects and 7 AMI patients by comparing it to T2p-bSSFP and T2 mapping using the contrast-to-noise ratio (CNR) and the contrast ratio as performance indices.ResultsIn simulation and phantom studies, T2STIR-bSSFP had improved contrast between edema and normal myocardium compared with the other two edema imaging techniques. In patients, the CNR of T2STIR-bSSFP was higher than T2p-bSSFP (5.9 ± 2.6 vs. 2.8 ± 2.0, P < 0.05) but had no significant difference compared with that of the T2 map (T2 map: 6.6 ± 3.3 vs. 5.9 ± 2.6, P = 0.62). The contrast ratio of T2STIR-bSSFP (2.4 ± 0.8) was higher than that of the T2 map (1.3 ± 0.1, P < 0.01) and T2p-bSSFP (1.4 ± 0.5, P < 0.05).ConclusionT2STIR-bSSFP has improved contrast between edematous and normal myocardium compared with commonly used bSSFP-based edema imaging techniques. T2STIR-bSSFP also differentiates between fat that was robustly suppressed and fluids around the heart. The technique is useful for single-shot edema imaging in AMI patients.

Highlights

  • Myocardial edema in acute myocardial infarction (AMI) is commonly imaged using dark-blood short tau inversion recovery turbo spin echo (STIR-TSE) cardiovascular magnetic resonance (CMR)

  • Phantom study A phantom experiment was performed to evaluate the performance of T2STIR-Balanced steady state free precession (bSSFP) and compare it with T2p-bSSFP and T2 mapping [12]

  • Note that the contrast ratios from T2p-bSSFP and the T2 map are similar, as both were T2 prepared in the same way

Read more

Summary

Introduction

Myocardial edema in acute myocardial infarction (AMI) is commonly imaged using dark-blood short tau inversion recovery turbo spin echo (STIR-TSE) cardiovascular magnetic resonance (CMR). The technique is sensitive to cardiac motion and coil sensitivity variation, leading to myocardial signal nonuniformity and impeding reliable depiction of edematous tissues. We propose here a single-shot magnetization prepared sequence that increases the contrast between edema and normal myocardium and apply it to myocardial edema imaging. As myocardial edema has long T2, T2-weighted cardiovascular magnetic resonance (CMR) imaging is usually used in the imaging of acute myocardial infarction (AMI) [1,2,3], where edema commonly occurs. The stagnant blood at the subendocardial rim would sometimes mimic edematous tissues These issues of STIR-TSE impede reliable depiction of edematous tissues [5, 6]. STIR-TSE is sensitive to arrhythmia and respiratory motion

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.