Abstract

BackgroundNear-field heating is a potential problem in focused ultrasound treatments, as it can result in thermal injury to skin, subcutaneous fat, and other tissues. Our goals were to determine if T2-based temperature mapping could be used reliably to measure near-field heating in adipose tissue and whether it is practical to perform such mapping during focused ultrasound treatments.MethodsWe investigated the dependence of T2 on temperature in ex vivo adipose tissue at 3T using a double-echo fast spin echo (FSE) sequence. We implemented and evaluated the T2-based temperature mapping technique in the adipose tissue of two healthy volunteers. Finally, we applied the technique during magnetic resonance-guided focused ultrasound (MRgFUS) treatments to measure near-field heating in eight patients with uterine fibroids.ResultsCalibration experiments in porcine adipose tissue determined a temperature coefficient of 6.16 ms/°C during heating and 5.37 ms/°C during cooling. The volunteer experiments demonstrated a strong correlation between the skin temperature and T2-based temperature measurements in the fat layer. During the treatments of patients with uterine fibroids, we observed a measurable change in the T2 of fat tissue within the path of the ultrasound beam and a temperature increase of up to 15 °C with sustained heating of more than 10 °C.ConclusionsOur results demonstrate the feasibility and importance of monitoring near-field heating in fatty tissues. The implementation of near-field monitoring between sonications can shorten treatments by reducing the cooling time. It can help improve safety by avoiding excessive heating in the near field.

Highlights

  • Near-field heating is a potential problem in focused ultrasound treatments, as it can result in thermal injury to skin, subcutaneous fat, and other tissues

  • Magnetic resonance-guided focused ultrasound (MRgFUS), known as high-intensity focused ultrasound (HIFU), is a promising non-invasive technique that is commercially available for the treatment of symptomatic uterine fibroids [1]

  • Proton resonance frequency (PRF) shift thermometry is used to monitor the heating during treatment due to its linearity and tissue-type independence [3]

Read more

Summary

Introduction

Near-field heating is a potential problem in focused ultrasound treatments, as it can result in thermal injury to skin, subcutaneous fat, and other tissues. Our goals were to determine if T2-based temperature mapping could be used reliably to measure near-field heating in adipose tissue and whether it is practical to perform such mapping during focused ultrasound treatments. The extracorporeal transducer delivers high-intensity ultrasonic energy through the skin, subcutaneous fat, muscle, and myometrium before it reaches the focus in the fibroid, with some absorption of ultrasound energy in the near field and subsequent tissue heating. While effective in water-based tissues, including muscle, myometrium, and the fibroid itself, PRF thermometry cannot detect temperature changes in abdominal fat [4]. Due to the difficulty in direct measurement of near-field heating, the amount of cooling time for a specific sonication is calculated based on models [7] but does not take into account the variation of anatomical features, such as the composition and thickness of the near-field tissue layers, which can differ substantially between patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.