Abstract

Magnetic resonance imaging (MRI) has been widely used in intracerebral hemorrhage (ICH) animal models and patients. In the current study, we examined whether MRI can predict at-risk brain tissue during the acute phase and long-term brain tissue loss after ICH. Male Sprague-Dawley rats had an intracaudate injection of autologous whole blood (10, 50 or 100 μL). MRI (T2 and T2*) sequences were performed at days 1, 3, 7, 14, and 28. The volume of brain tissue at risk was calculated as the difference between T2 and T2* lesion volumes. Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa (DARPP-32) was used as a neuronal marker in the basal ganglia. Brain swelling at day 3 and brain tissue loss at day 28 after ICH were also measured. We found that the difference in lesion volumes between T2 and T2* measured by MRI coincided well with the difference between the volume of the DARPP-32-negative area and that of the hematoma measured in brain sections. Volumes of brain tissue at risk at day 3 correlated with the brain swelling at day 3 (p < 0.01) as well as the final brain tissue loss at day 28 (n = 9, p < 0.05). The results suggest that the difference between T2 lesions and T2* lesions could be an indicator of at-risk brain tissue and it could be used as a predictor of neuronal loss in ICH patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call