Abstract

A novel imaging modality is introduced which uses radiofrequency longitudinally detected electron spin resonance (RF-LODESR). It is capable of providing qualitative and semiquantitative information on a variety of parameters reflecting physiological function, the most significant being tissue oxygenation. Effective spin-lattice (T*1e) and spin-spin (T*2e) electronic relaxation time maps of the abdomen of living 200-g rats were generated after intravenous administration of a triarylmethyl free radical (TAM). These maps were used to evaluate oxygen distribution. Differences between the liver, kidneys, and bladder were noted. Conclusions were made regarding the distribution, perfusion, and excretion rate of the contrast medium. Ligature-induced anoxia in the kidney was also visualized. LODESR involves transverse ESR irradiation with a modulated excitation, and observing oscillations in the spin magnetization parallel to the main magnetic field. The T*1e and T*2e maps were calculated from a set of LODESR signal phase images collected at different detection frequencies. Each phase image also provides qualitative information on tissue oxygen levels without any further processing. This method presents an alternative to the conventional transverse ESR linewidth-based oximetry methods, particularly for animal whole-body imaging applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call