Abstract

BackgroundThe T1 Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T1 mapping quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité Européenne (CE) regulatory clearance. We report T1 measurement repeatability across centers describing sequence, magnet, and vendor performance.MethodsPhantoms batch-manufactured in August 2015 underwent 2 years of structural imaging, B0 and B1, and “reference” slow T1 testing. Temperature dependency was evaluated by the United States National Institute of Standards and Technology and by the German Physikalisch-Technische Bundesanstalt. Center-specific T1 mapping repeatability (maximum one scan per week to minimum one per quarter year) was assessed over mean 358 (maximum 1161) days on 34 1.5 T and 22 3 T magnets using multiple T1 mapping sequences. Image and temperature data were analyzed semi-automatically. Repeatability of serial T1 was evaluated in terms of coefficient of variation (CoV), and linear mixed models were constructed to study the interplay of some of the known sources of T1 variation.ResultsOver 2 years, phantom gel integrity remained intact (no rips/tears), B0 and B1 homogenous, and “reference” T1 stable compared to baseline (% change at 1.5 T, 1.95 ± 1.39%; 3 T, 2.22 ± 1.44%). Per degrees Celsius, 1.5 T, T1 (MOLLI 5s(3s)3s) increased by 11.4 ms in long native blood tubes and decreased by 1.2 ms in short post-contrast myocardium tubes. Agreement of estimated T1 times with “reference” T1 was similar across Siemens and Philips CMR systems at both field strengths (adjusted R2 ranges for both field strengths, 0.99–1.00). Over 1 year, many 1.5 T and 3 T sequences/magnets were repeatable with mean CoVs < 1 and 2% respectively. Repeatability was narrower for 1.5 T over 3 T. Within T1MES repeatability for native T1 was narrow for several sequences, for example, at 1.5 T, Siemens MOLLI 5s(3s)3s prototype number 448B (mean CoV = 0.27%) and Philips modified Look-Locker inversion recovery (MOLLI) 3s(3s)5s (CoV 0.54%), and at 3 T, Philips MOLLI 3b(3s)5b (CoV 0.33%) and Siemens shortened MOLLI (ShMOLLI) prototype 780C (CoV 0.69%). After adjusting for temperature and field strength, it was found that the T1 mapping sequence and scanner software version (both P < 0.001 at 1.5 T and 3 T), and to a lesser extent the scanner model (P = 0.011, 1.5 T only), had the greatest influence on T1 across multiple centers.ConclusionThe T1MES CE/FDA approved phantom is a robust quality assurance device. In a multi-center setting, T1 mapping had performance differences between field strengths, sequences, scanner software versions, and manufacturers. However, several specific combinations of field strength, sequence, and scanner are highly repeatable, and thus, have potential to provide standardized assessment of T1 times for clinical use, although temperature correction is required for native T1 tubes at least.

Highlights

  • T1 mapping aids clinicians in the assessment and diagnosis of myocardial disease

  • Agreement of estimated T1 times with “reference” T1 was similar across Siemens and Philips cardiovascular magnetic resonance (CMR) systems at both field strengths

  • Within T1MES repeatability for native T1 was narrow for several sequences, for example, at 1.5 T, Siemens MOLLI 5s(3s)3s prototype number 448B and Philips modified Look-Locker inversion recovery (MOLLI) 3s(3s)5s (CoV 0.54%), and at 3 T, Philips MOLLI 3b(3s)5b (CoV 0.33%) and Siemens shortened MOLLI (ShMOLLI) prototype 780C (CoV 0.69%)

Read more

Summary

Introduction

T1 mapping aids clinicians in the assessment and diagnosis of myocardial disease. measurement needs to be stable over time with transferable values. The field of T1 mapping would benefit from a “T1 standard” to enable cross-center T1 mapping data pooling and delivery [3]—like the international normalized ratio (INR) which makes it possible to adjust the dosing of vitamin K antagonists regardless of which laboratory has performed the test [4]. The T1 Mapping and Extracellular volume (ECV) Standardization (T1MES) phantom program was established to explore T1 mapping quality assurance at 1.5 T and 3 T and understand the feasibility of delivering a “T1 standard” [5]. The T1 Mapping and Extracellular volume (ECV) Standardization (T1MES) program explored T1 mapping quality assurance using a purpose-developed phantom with Food and Drug Administration (FDA) and Conformité Européenne (CE) regulatory clearance. We report T1 measurement repeatability across centers describing sequence, magnet, and vendor performance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call