Abstract
The aim of this study is to design a method of myocardial T1 quantification in small laboratory animals and to investigate the effects of spatiotemporal regularization and the needed acquisition duration. We propose a compressed-sensing approach to T1 quantification based on self-gated inversion-recovery radial two/three-dimensional (2D/3D) golden-angle stack-of-stars acquisition with image reconstruction performed using total-variation spatiotemporal regularization. The method was tested on a phantom and on a healthy rat, as well as on rats in a small myocardium-remodeling study. The results showed a good match of the T1 estimates with the results obtained using the ground-truth method on a phantom and with the literature values for rats myocardium. The proposed 2D and 3D methods showed significant differences between normal and remodeling myocardium groups for acquisition lengths down to approximately 5 and 15 min, respectively. A new 2D and 3D method for quantification of myocardial T1 in rats was proposed. We have shown the capability of both techniques to distinguish between normal and remodeling myocardial tissue. We have shown the effects of image-reconstruction regularization weights and acquisition length on the T1 estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.