Abstract

Conventional T1- or T2-weighted single mode contrast-enhanced magnetic resonance imaging (MRI) may produce false results. Thereby, there is a need to develop dual contrast agents, T1- and T2-weighted, for more accurate MRI imaging. The dual contrast agents should possess high magnetic resonance (MR) relaxivities, targeted tumor linking, and minimum recognition by the immune system. We have developed nitrodopamine-PEG grafted single core truncated cubic iron oxide nanoparticles (ND-PEG-tNCIOs) capable of producing marked dual contrasts in MRI with enhanced longitudinal and transverse relaxivities of 32 ± 1.29 and 791 ± 38.39 mM–1 s–1, respectively. Furthermore, the ND-PEG-tNCIOs show excellent colloidal stability in physiological buffers and higher cellular internalization in cancerous cells than in phagocytic cells, indicating the immune evasive capability of the nanoparticles. These findings indicate that tNCIOs are strong candidates for dual contrast MRI imaging, which is vital for noninvasive real-time detection of nascent cancer cells in vivo and for monitoring stem cells transplants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.