Abstract
Efficiently testing large configuration spaces of Software Product Lines (SPLs) needs a sampling algorithm that is both scalable and provides good t-wise coverage. The 2019 SPLC Sampling Challenge provides large real-world feature models and asks for a t-wise sampling algorithm that can work for those models.We evaluated t-wise coverage by uniform sampling (US) the configurations of one of the provided feature models. US means that every (legal) configuration is equally likely to be selected. US yields statistically representative samples of a configuration space and can be used as a baseline to compare other sampling algorithms.We used existing algorithm called Smarch to uniformly sample SPL configurations. While uniform sampling alone was not enough to produce 100% 1-wise and 2-wise coverage, we used standard probabilistic analysis to explain our experimental results and to conjecture how uniform sampling may enhance the scalability of existing t-wise sampling algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.