Abstract

T-type Ca(2+) channels have been suggested to play a role in cardiac automaticity, cell growth, and cardiovascular remodeling. Although three genes encoding for a T-type Ca(2+) channel have been identified, the nature of the isoform(s) supporting the cardiac T-type Ca(2+) current (I(Ca,T)) has not yet been determined. We describe the postnatal evolution of I(Ca,T) density in freshly dissociated rat atrial and ventricular myocytes and its functional properties at peak current density in young atrial myocytes. I(Ca,T) displays a classical low activation threshold, rapid inactivation kinetics, negative steady-state inactivation, slow deactivation, and the presence of a window current. Interestingly, I(Ca,T) is poorly sensitive to Ni(2+) and insensitive to R-type current toxin SNX-482. RT-PCR experiments and comparison of functional properties with recombinant Ca(2+) channel subtypes suggest that neonatal I(Ca,T) is related to the alpha(1G)-subunit. Atrial natriuretic factor (ANF) secretion was measured using peptide radioimmunoassays in atrial tissue. Pharmacological dissection of ANF secretion indicates an important contribution of I(Ca,T) to Ca(2+) signaling during the neonatal period.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.