Abstract

Pulmonary veins (PVs) are known to initiate paroxysmal atrial fibrillation. T-type calcium current (I(Ca-T)) has a role in normal and abnormal automaticity of cardiomyocytes. The aim of this study was to evaluate whether I(Ca-T) contributes to PV electrical activity. By whole-cell clamp techniques in rabbit myocytes, I(Ca-T) was identified in 12 (39%) of 31 PV cardiomyocytes with pacemaker activity, 2 (9%) of 23 PV cardiomyocytes without pacemaker activity, and 2 (15%) of 13 atrial myocytes (P < 0.05). Maximum I(Ca-L) and I(Ca-T) densities from PV cardiomyocytes with pacemaker activity were 6.87 +/- 2.17 pA/pF and 1.38 +/- 0.69 pA/pF, respectively. Nickel (40 microM) decreased the spontaneous activity in 5 (36%) of 14 PV cardiomyocytes (3.1 +/- 0.6 Hz vs 2.2 +/- 0.5 Hz, P < 0.05), reduced the amplitudes of delayed after depolarization from 13 +/- 1 mV to 7 +/- 1 mV (n = 4, P < 0.05) and inhibited transient inward currents from 1.2 +/- 0.2 pA/pF to 0.7 +/- 0.1 pA/pF (n = 11, P < 0.01). We conclude that I(Ca-T) contributes to PV pacemaker activity and triggered activity, which are of functional importance in PV arrhythmogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.