Abstract
Orexin is a neuropeptide restrictedly synthesized in the hypothalamus, but extensively modulates the whole brain region activity including prefrontal cortex (PFC), and involved in the pathophysiology of psychiatric disorders. GABAergic interneurons in the mPFC are a promising pharmacological target for developing antidepressant therapies. Here, we examined the effects of the orexin on GABAergic transmission onto pyramidal neurons in the deep layers of the mPFC. We found that bath application of orexin dose-dependently increased the amplitude of evoked IPSCs (eIPSCs). Orexin increased the frequency but not the amplitude of miniature IPSCs (mIPSCs). Ca2+ influx through T-type voltage-gated Ca2+ channels is required for orexin-induced increases in GABA release. We also found orexin increases GABA release probability and the number of releasable vesicles. Orexin depolarizes somatostatin (Sst) interneurons without effects on the firing rate of action potentials (APs) of Sst interneurons. Orexin-induced depolarization of Sst interneurons is independent of extracellular Na+, Ca2+ and T-type Ca2+ channels, but requires inward rectifier K+ channels (Kirs). The present study suggests that orexin enhances GABAergic transmission onto mPFC pyramidal neurons through inhibiting Kirs on Sst interneurons, which further depolarizes interneurons leading to increase in Ca2+ influx via T-type Ca2+ channels. Our results may provide a cellular and molecular mechanism that helps explain the physiological functions of orexin in the brain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.