Abstract

Given a finite quiver without oriented cycles, we describe a family of algebras whose module category has the same derived category as that of the quiver algebra. This is done in the more general setting oft-structures in triangulated categories. A completeness result is shown for Dynkin quivers, thus reproving a result of Happel [H].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.