Abstract
In most of the auction systems the values of bids are known to the auctioneer. This allows him to manipulate the outcome of the auction. Hence, one might be interested in hiding these values. Some cryptographically secure protocols for electronic auctions have been presented in the last decade. Our work extends these protocols in several ways. On the basis of garbled circuits, i.e., encrypted circuits, we present protocols for sealed-bid auctions that fulfill the following requirements: 1) protocols are information-theoretically t-private for honest but curious parties; 2) the number of bits that can be learned by malicious adversaries is bounded by the output length of the auction; 3) the computational requirements for participating parties are very low: only random bit choices and bitwise computation of the XOR-function are necessary. Note that one can distinguish between the protocol that generates a garbled circuit for an auction and the protocol to evaluate the auction. In this paper we address both problems. We will present a t-private protocol for the construction of a garbled circuit that reaches the lower bound of 2t + 1 parties, and a more randomness efficient protocol for (t + 1)2 parties. Finally, we address the problem of bid changes in an auction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.