Abstract
In a (t, n) secret sharing scheme (SS), a dealer divides the secret into n shares in such way that any t or more than t shares can reconstruct the secret but fewer than t shares cannot reconstruct the secret. The multi-SS is an extension of the (t, n) SS in which shares can be reused to reconstruct multiple secrets. Thus, the efficiency of the multi-SS is better than the efficiency of the (t, n) SS. In this paper, we propose the first multi-SS using a bivariate polynomial. Our design is unique in comparing with all existing multi-SSs. Shares generated using a bivariate polynomial can not only be used to reconstruct multiple secrets but also be used to establish pairwise keys between any pair of shareholders. The pairwise keys can protect exchange information in the secret reconstruction to prevent outsiders from obtaining the recovered secrets. All existing multi-SSs require additional key establishment to accomplish this.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.