Abstract

We review the current status of Waterman's T-matrix approach which is one of the most powerful and widely used tools for accurately computing light scattering by nonspherical particles, both single and composite, based on directly solving Maxwell's equations. Specifically, we discuss the analytical method for computing orientationally-averaged light-scattering characteristics for ensembles of nonspherical particles, the methods for overcoming the numerical instability in calculating the T matrix for single nonspherical particles with large size parameters and/or extreme geometries, and the superposition approach for computing light scattering by composite/aggregated particles. Our discussion is accompanied by multiple numerical examples demonstrating the capabilities of the T-matrix approach and showing effects of nonsphericity of simple convex particles (spheroids) on light scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.