Abstract

Background aimsChimeric antigen receptors (CARs) designed for adoptive immunotherapy need to achieve two functions: antigen recognition and triggering of the lytic machinery of reprogrammed effector cells. Cytotoxic T cells have been engineered with FcγRIII (CD16) chimeric molecules to be redirected against malignant cells by monoclonal antibodies (mAbs). These cells have been proven to mediate granule-dependent cellular cytotoxicity, but it is not clear whether they can also kill malignant cells by a granule-independent mechanism of cell cytotoxicity. MethodsWe engineered a CD16A-CAR equipped with the extracellular CD16A, the hinge spacer and the transmembrane region of CD8, and the ζ-chain of the T-cell receptor/CD3 complex in tandem with the CD28 co-stimulatory signal transducer module. The CD16A-CAR was expressed and functionally tested in the MD45 cell line, a murine T-cell hybridoma with a defective granular exocytosis pathway but capable of killing target cells by a Fas ligand–mediated lysis. ResultsOur results indicate that in vitro cross-linking of CD16A-CAR on MD45 cells by the Fc fragment of mAb opsonized tumor cells induced interleukin-2 release and granule-independent cellular cytotoxicity. ConclusionsWe conclude that strategies aimed to implement the therapeutic functions of mAbs used in the clinic with T-dependent immune responses driven by engineered T cells expressing FcγR-CAR can boost the antitumor efficacy of mAbs used in the clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call